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In this study, the combined Hartree–Fock (HF) and Hartree–Fock–Roothaan equa-
tions are derived for multideterminantal single configuration states with any number
of open shells of atoms, molecules and nuclei. It is shown that the postulated orbital-
dependent energy and Fock operators are invariant to the unitary transformation of
orbitals. This new methodology is based entirely on the spin-restricted HF theory. As
an application of combined open shell theory of atomic–molecular and nuclear sys-
tems presented in this paper, we have solved Hartree–Fock–Roothaan equations for the
ground state of electronic configuration C(1s22s22p2) using Slater type orbitals as a
basis.
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1. Introduction

The main application of Hartree–Fock (HF) method was, in atomic and
molecular physics, the study of Coulomb systems (atoms, ions and molecules)
with a purely Coulombic Hamiltonian of electrons interacting with static nuclei.
In nuclear physics, the use of HF method to compute the ground state of
nuclei is more recent and we refer, for example, to papers [1–5] and the refer-
ences therein. Roothaan’s open shell HF theory [6] is commonly used to evalu-
ate the various properties of certain states of atoms, molecules and nuclei (see,
e.g., [7–15]). This approach does not seem to have been extended to arbitrary
open-shell states. In Roothaan’s treatment, which is an extension of HF theory
for closed shell systems [16], and in the extensions to open-shell states by oth-
ers [17–23], there are well-known complicating features, which do not occur in
the closed-shell equations. In [24], we eliminated these difficulties and derived
HF and Hartree–Fock–Roothaan (HFR) equations applicable to any multideter-
minantal state of a single configuration of atomic and molecular systems that
has arbitrary open-shells. The aim of this report is to derive the combined HF
and HFR equations of atomic–molecular and nuclear systems applicable to any
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multideterminantal state of a single configuration that has any number of open
shells of any symmetry.

2. Definitions and basic formulas

In the present paper, we use the combined Hamiltonian of the atomic–
molecular and nuclear systems of N particles (electrons or nucleons) in the fol-
lowing form:

Ĥω =
N∑

µ=1

(
− 1

2mω−1
∇2

µ − δω1

∑

a

Za

raµ

)
+

N−1∑

µ=1

N∑

ν=µ+1

f ω
(
xµν

)
, (1)

where f ω(xµν) are the repulsion or attraction interaction potentials for electrons
(ω = 1) and nucleons (ω = 2), respectively; m is the mass of nucleon. Thus we
deal in both cases with fermions, i.e., particles which obey the Pauli exclusion
principle. This means that the particles of atomic–molecular and nuclear systems
will be described by antisymmetric wave functions-Slater determinants. The gen-
eral form of Slater determinants for an N – particle open shell system may be
written as [25]

U
(
unN−k+1(xN−k+1) . . . unN (xN )

)

≡ U
(
un1(x1)un2(x2) . . . unN−k (xN−k)unN−k+1(xN−k+1) . . . unN (xN )

)

= 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

un1(x1) un2(x1) . . . unN−k (x1) unN−k+1(x1) . . . unN (x1)

un1(x2) un2(x2) . . . unN−k (x2) unN−k+1(x2) . . . unN (x2)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

un1(xN ) un2(xN ) . . . unN−k (xN ) unN−k+1(xN ) . . . unN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣

,

(2)

where n ≡ imω−1
t ms and x ≡ xyzκω−1σ . Here, un(x) ≡ ui (xyz)υω−1

mt
(κ)ums (σ )

is the isospin–spin orbital; ui (xyz), υmt (κ), and ums (σ ) are the spatial, isospin
and spin wave functions, respectively. The spin orbital un(x) ≡ ui (xyz)ums (σ )

for atoms and molecules is the special case of isospin–spin orbital for ω = 1.
The (un1, un2, . . . , unN−k ) and (unN−k+1, . . . , unN ) occurring in equation (2) are
the sets of orthonormal isospin–spin orbitals for closed and open shells, respec-
tively, where 0 � k � N . All of the orthonormal and independent Slater deter-
minants for a given configuration can be obtained from equation (2). The first
N − k orthonormal and independent isospin–spin orbitals in these determinants
are the same (closed shells), and all other k isospin–spin orbitals are different
(open shells). The orbitals and Slater determinants form the orthonormal sets:
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∫
u∗

i us dv = δis, (3a)
∑

k

v∗
mt

(κ) vm′
t
(κ) = δmt m′

t
, (3b)

∑

σ

u∗
ms

(σ ) um′
s
(σ ) = δmsm′

s
, (3c)

∫
U∗U ′ dτ = δUU ′ . (3d)

3. Combined orbital-dependent energy expression

The postulated energy expectation value for a single configuration multi-
determinantal state of combined atomic–molecular and nuclear systems with a
given space, spin and isospin symmetry can be written in the following form:

Eω = ω

⎡

⎣2
n∑

i

fi hi +
n∑

i jkl

(
2ωAi j

kl J i j
kl − Bi j

kl K i j
kl

)
⎤

⎦ . (4)

Here n = nc + no is the number of occupied orbitals belonging to closed
(nc) and open (no) shells, 1 � i, j, k, l � n and ω = 1, 2. For ω = 1 and for
ω = 2 equation (4) denotes the energy expectation value of atomic–molecular
and nuclear systems, respectively; fi is the fractional occupancy of shell i , which
is determined by

fi = Ni

N0i
, (5)

where N0i and Ni are number of states and particles in shell i , respectively. It
should be noted that the orbital occupation numbers can also be determined by
the use of MCSCF or CASSCF approaches, which are well suited for open-shell
problems and routine these days (see, e.g., [7]). In MCSCF and CASSCF orbital
optimizations, the orbital occupation numbers are the result of calculations and
not some arbitrary numbers selected before the calculation is performed.

In equation (4), the coefficients Ai j
kl and Bi j

kl are the coupling-projection con-
stants. For closed–closed and closed–open shell interaction energies (1 � i, j �
nc, 1 � k, l � n and 1 � i, j � n, 1 � k, l � nc) the coupling-projection coeffi-
cients Ai j

kl and Bi j
kl are determined by

Ai j
kl = Bi j

kl = fi fkδi jδkl . (6)

In the case of open–open shell interaction energies (nc + 1 � i, j � n and
nc + 1 � k, l � n) the values of coefficients Ai j

kl and Bi j
kl depend on the state

under study. We notice that the possibility of writing the combined energy of



180 I.I. Guseinov / Hartree–Fock theory of atomic–molecular and nuclear systems

atomic–molecular and nuclear systems in form (4) is based on the assumption
that the energy Eω is the average expectation value for all the degenerate total
orthonormal sets of multideterminantal wave functions �	

M	
for state with the

irreducible representation 	:

Eω
	 = 1

N	

∑

M	

∫
�	∗

M	
Ĥ�	

M	
dτ, (7)

where

�	
M	

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�LT S
ML MT MS

�L S
ML MS

�
S
M
MS

�	S
M	 MS

,

N	 =

⎧
⎪⎪⎨

⎪⎪⎩

(2L + 1)(2T + 1)(2S + 1) for Nuclei,
(2L + 1)(2S + 1) for Atoms,
(2 − δ
0)(2S + 1) for Linear Molecules,
	d(2S + 1) for Nonlinear Molecules.

(8)

Here, the quantities L, T , and S are the total orbital, isospin and spin quantum
numbers, respectively.

In equation (4), hi , J i j
kl and K i j

kl are defined by

hi =
∫

u∗
i (�r1)ĥui (�r1)dv1, (9)

J i j
kl =

∫
u∗

i (�r1) Ĵkl(�r1)u j (�r1)dv1 =
∫

u∗
k(�r2) Ĵi j (�r2)ul(�r2)dv2, (10)

K i j
kl =

∫
u∗

i (�r1)K̂kl(�r1)u j (�r1)dv1 =
∫

u∗
k(�r2)K̂i j (�r2)ul(�r2)dv2, (11)

where

ĥ = − 1
2mω−1

∇2
1 − δω1

∑

a

Za

ra1
, (12)

Ĵkl(�r1)ϕ(�r1) =
(∫

u∗
k(�r2) f (x21)ul(�r2)dv2

)
ϕ(�r1), (13)

K̂kl(�r1)ϕ(�r1) =
(∫

u∗
k(�r2) f (x21)ϕ(�r2)dv2

)
ul(�r1). (14)

Here, K̂kl is the exchange operator (see [24] for the definition of symmetrical
properties of square n2-dimensional supermatrices A, B, J and K ).
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In the single-determinantal closed shell case, one has fi = fk = 1 and Ai j
kl =

Bi j
kl = δi jδkl . Then, the formula for Eω, equation (4), can be rewritten using inte-

grals hi , J ii
kk , and K ii

kk ,

Eω = ω

[
2

n∑

i

hi +
n∑

ik

(2ωJ ii
kk − K ii

kk)

]
, (15)

where J ii
kk and K ii

kk are the ordinary 2-indexed integrals of Roothaan’s closed
shell HF theory [16].

4. Use of modified Slater’s determinantal method in evaluation
of coupling-projection coefficients

For the evaluation of coupling-projection coefficients occurring in the com-
bined energy expression, equation (4), we have to find independent Slater deter-
minants and orthonormal multideterminantal wave functions of terms. For this
purpose, we use the determinantal method presented in [26,27]. However, by
the use of Slater’s determinantal method it is not only difficult, in general, to
find independent Slater determinants but also to simplify the construction of
multideterminantal wave functions for open-shell systems. In this section, we
have modified Slater’s determinantal method for the evaluation of independent
Slater determinants, which are useful for the construction of multideterminantal
wave functions and for the evaluation of coupling-projection coefficients.

We have now to consider the problem of determining which of the indepen-
dent Slater determinants occur in a given configuration. According to Guseinov
[25], we can write down the N individual sets comprising each complete set,
which occurs in the configuration. The number and nature of the closed shells is
without effect on the values of quantum numbers in the open-shell spin-orbitals.
We denote here a set of quantum numbers for open-shell spin-orbitals by ni
(where i = 1, 2, . . . , k), namely,

ni ≡ 1, 2, . . . , Ni , (16)

where Ni is the number of spin-orbitals in the open shell i .
In order to obtain from equation (2), all of the independent Slater determi-

nants for a given electronic or nucleonic configuration we modified the Slater’s
determinantal method for the states of the same open-shell by taking into
account in equation (2) only those values of ni in the following form:

n1 < n2 < · · · < nk . (17)

We refer to the Slater rule based on the inequality (17) as modified Slater’s
determinantal method for the evaluation of independent determinantal wave
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functions. It should be noted that in the case of different open-shells the sets of
quantum numbers in equation (2) are independent. Therefore, it is easy to obtain
the independent determinantal wave functions for these systems by the use of
modified determinantal method.

Now we can move on, as an example, to an application of modified
determinantal method for the determination of Slater determinants for atoms.
Having made a list of the complete sets, which belong to an atomic electronic
configuration we may classify them by values of

∑
ml = ML and

∑
ms = MS.

To make the argument concrete, let us consider the configuration C(1s22s22p2),
in which two electrons occur outside closed shells. The complete sets for these
electrons classified by ML , MS values and the independent determinants obtained
from equation (2) by modified determinantal method are shown in table 1.

It is easy to find from table 1 the terms and the orthonormal sets of mul-
tideterminantal wave functions �L S

ML MS
, which are egienfunctions of operators

L̂2, L̂ Z , Ŝ2 and Ŝz . The results are given in table 2.
For the calculation of coupling-projection coefficients Ai j

kl and Bi j
kl for open

shell electrons we have to take into account table 2 for wave functions �L S
ML MS

in
equation (7) and to compare the results with equation (4). The obtained results

Table 1
The independent determinantal wave functions for the electronic configuration C(1s22s22p2).

n5 : ml5 ms5 n6 : ml6 ms6 ML MS U (21ml5 ms5 21ml6 ms6)

1 : 1 1
2 2 : 1− 1

2 2 0 U1(211 1
2 211 − 1

2 )

3 : 0 1
2 1 1 U2(211 1

2 210 1
2 )

4 : 0− 1
2 1 0 U3(211 1

2 210− 1
2 )

5 : −1 1
2 0 1 U5(211 1

2 21 − 1 1
2 )

6 : −1− 1
2 0 0 U6(211 1

2 21 − 1− 1
2 )

2 : 1− 1
2 3 : 0 1

2 1 0 U4(211− 1
2 210 1

2 )

4 : 0− 1
2 1 −1 U9(211− 1

2 210− 1
2 )

5 : −1 1
2 0 0 U7(211− 1

2 21 − 1 1
2 )

6 : −1− 1
2 0 −1 U10(211− 1

2 21 − 1− 1
2 )

3 : 0 1
2 4 : 0− 1

2 0 0 U8(210 1
2 210− 1

2 )

5 : −1 1
2 −1 1 U11(210 1

2 21 − 1 1
2 )

6 : −1− 1
2 −1 0 U12(210 1

2 21 − 1− 1
2 )

4 : 0− 1
2 5 : −1 1

2 −1 0 U13(210− 1
2 21 − 1 1

2 )

6 : −1− 1
2 −1 −1 U14(210− 1

2 21 − 1− 1
2 )

5 : −1 1
2 6 : −1− 1

2 −2 0 U15(21 − 1 1
2 21 − 1− 1

2 )
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Table 2
The terms of electronic configuration C(1s22s22p2) and their multideterminantal wave

functions.

Terms �L S
ML MS

1S �00
00 = 1√

3
(U6 − U7 − U8)

1 D �20
20 = U1 �20

10 = 1√
2
(U3 − U4) �20

00 = 1√
6
(U6 − U7 + 2U8)

�20
−10 = 1√

2
(U12 − U13) �20

−20 = U15

3 P �11
11 = U2 �11

10 = 1√
2
(U3 + U4) �11

1−1 = U9

�11
01 = U5 �11

00 = 1√
2
(U6 + U7) �11

0−1 = U10

�11−11 = U11 �11−10 = 1√
2
(U12 + U13) �11−1−1 = U14

Table 3
The values of coupling-projection coefficients Ai j

kl and Bi j
kl for electronic configuration

C(1s22s22p2).

Closed–closed and closed–open Open–open shells
shells equations (5) and (6) equations (4) and (7)

A11
11 = 1 B11

11 = 1 A33
44 = A44

33 = 1
12 B33

44 = B44
33 = 1

6
A11

22 = A22
11 = 1 B11

22 = B22
11 = 1 A33

55 = A55
33 = 1

12 B33
55 = B55

33 = 1
6

A11
33 = A33

11 = 1
3 B11

33 = B33
11 = 1

3 A44
55 = A55

44 = 1
12 B44

55 = B55
44 = 1

6
A11

44 = A44
11 = 1

3 B11
44 = B44

11 = 1
3

A11
55 = A55

11 = 1
3 B11

55 = B55
11 = 1

3
A22

22 = 1 B22
22 = 1

A22
33 = A33

22 = 1
3 B22

33 = B33
22 = 1

3
A22

44 = A44
22 = 1

3 B22
44 = B44

22 = 1
3

A22
55 = A55

22 = 1
3 B22

55 = B55
22 = 1

3

for C(1s22s22p2) are presented in table 3, where

nlm : 100 200 211 210 21 − 1
i : 1 2 3 4 5

and nc = 2, n0 = 3, n = nc + n0 = 5, f1 = f2 = 1, f3 = f4 = f5 = 2/6.

5. Hartree–Fock and Hartree–Fock–Roothaan equations

The formula (4) for Eω seems to be completely general, for a single con-
figuration with any number of open shells. The use of symmetrical and Hermi-
tian properties of the Ai j

kl, Bi j
kl , Ĵkl and K̂kl (see equations (11)–(14) of Ref. [24])

simplifies the derivation of combined HF equations.



184 I.I. Guseinov / Hartree–Fock theory of atomic–molecular and nuclear systems

We now apply the variational principle to the total energy, equation (4), in
order to obtain the combined HF equations for the spatial orbitals ui of atoms,
molecules and nuclei. This derivation closely parallels the derivation of HF equa-
tions in [24] for the atomic and molecular systems. If we take into account the
subsidiary conditions (3a) by the method of the Lagrangian undetermined mul-
tipliers, denote the Lagrangian multiplier by −2ωεsi and make use of the sym-
metrical and Hermitian properties of Ai j

kl , Bi j
kl , ĥ, Ĵkl and K̂kl , then the variation

of energy Eω, equation (4), gives the following equations for the orbitals;

F̂ i ui =
∑

s

usεsi , (18)

where ε is a Hermitian matrix of Lagrangian multipliers and F̂ i is the Fock
operator defined by

F̂ i = fi ĥ + Ĝi . (19)

Here, the total particle interaction operator Ĝi is determined by

Ĝi =
n∑

j,kl

(
2ω Âi j

kl Ĵkl − B̂i j
kl K̂kl

)
. (20)

The quantities Âi j
kl and B̂i j

kl occurring in equation (20) are the coupling-
projection operators, defined by

Âi j
klui = Ai j

klu j , (21)

B̂i j
kl ui = Bi j

kl u j . (22)

The operator F̂ i , which is defined in terms of the orbitals ui , is easily
shown to be invariant when orbitals are subjected to the unitary transformation
by means of a unitary matrix Q [24]:

ui (�r) =
∑

i ′
u′

i ′(�r)Q+
i ′i , u′

i ′(�r) =
∑

i

ui (�r)Qii ′ . (23)

It is easy to show that the energy expression, equation (4), is also invariant
to such changes of the orbitals.

Accordingly, the orbitals u′
i ′ satisfy

F̂ i ′ui ′ =
∑

s′
u′

s′ε′
s′i ′, (24)

where

ε′ = Q+ε Q. (25)
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Equation (25) shows that the Fock operator can be diagonalized using the
unitary combinations of the original orbitals. Since the matrix ε is Hermitian,
there exists a unitary matrix Q so that ε′ = Q+εQ is a diagonal matrix with real
diagonal elements. It is therefore, no loss of generality if we assume that our set
of orbitals satisfies the simpler equations

F̂ i ui = εi ui , (26)

where the operator F̂ i is defined by equation (19).
It should be noted that the orbital-dependent Fock operators and total

energy in Roothaan’s open shell HF theory defined by Roothaan [6]

E = 2
∑

k

Hk +
∑

kl

(2Jkl − Kkl)

+ f

[
2

∑

m

Hm + f
∑

mn

(2a Jmn − bKmn) + 2
∑

km

(2Jkm − Kkm)

]
(27)

are not invariant to the unitary transformation of orbitals and, therefore, the
Fock operators of Roothaan’s approach can not be diagonalized.

The combined HF equations for closed-shell atomic–molecular and nuclear
systems can be obtained from equation (26) using equation (6) for fi = fk = 1:

F̂ui = εi ui , (28)

where

F̂ = ĥ + Ĝ, (29)

Ĝ =
n∑

k

(2ω Ĵkk − K̂kk). (30)

Using equations (4), (19), (20) and (26) we can express the total energy in
terms of the orbital energies εi and the one-particle integrals hi :
for open-shell systems

Eω = ω

n∑

i

( fi hi + εi ), (31)

for closed-shell systems

Eω = ω

n∑

i

(hi + εi ). (32)
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It is well known that the orbitals ui , occurring in the atomic–molecular and
nuclear structure theories, usually are defined as linear combinations of arbitrary
basic atomic or nuclear orbitals (LCAO or LCNO) [16]:

ui =
∑

q

χqCqi . (33)

In order to obtain the HFR equations for the coefficients Cqi we have to
minimize the expression (4) by varying the coefficients Cqi within the limits per-
mitted by the requirement that the orbitals (33) form an orthonormal set, as
expressed by equation (3a). We restrict ourselves here to writing down the results
for the combined open shell HFR equations of atomic–molecular and nuclear
systems:

∑

q

(F̂ i
pq − εi Spq)Cqi = 0, (34)

where

Spq =
∫

χ∗
pχq dv, (35)

F̂ i
pq = fi h pq + Ĝi

pq , (36)

h pq =
∫

χ∗
p

(
− 1

2mω−1
∇2

1 − δω1

∑

a

Za

ra1

)
χq dv1, (37)

Ĝi
pq =

∑

j,rs

(
2ω âi j

rs I pq
rs − b̂i j

rs K pq
rs

)
. (38)

Here, the âi j
rs and b̂i j

rs are the coupling-projection operators of HFR equations
determined through the matrix elements of the square n-dimensional density
matrices âi j and b̂i j by the following formulas:

âi j = C Âi j C+, (39)

b̂i j = C B̂i j C+, (40)

where the operators âi j and b̂i j are defined by

âi j Cqi = ai j Cq j , (41)

b̂i j Cqi = bi j Cq j . (42)

The quantities I pq
rs and K pq

rs occurring in equation (38) are defined by

I pq
rs =

∫∫
χ∗

p(x1)χ
∗
r (x2) f (x21)χq(x1)χs(x2)dv1 dv2, (43)

K pq
rs =

∫∫
χ∗

p(x1)χ
∗
r (x2) f (x21)χs(x1)χq(x2)dv1 dv2. (44)
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Taking into account equation (6) for fi = fk = 1 in equation (33) it is easy
to obtain for the combined closed shell HFR equations the following formulas:

∑

q

(Fpq − εi Spq)Cqi = 0, (45)

where

Fpq = h pq + G pq , (46)

G pq =
∑

rs

ρ∗
rs

(
2ωI pq

rs − K pq
rs

)
, (47)

ρ = CC+. (48)

We see from tables 1–3 that the modified determinantal method can be
of considerable importance in the simplification and calculation of independent
Slater determinants, multideterminantal wave functions and coupling-projection
coefficients for open-shell systems. As an application of modified determinan-
tal method, we have solved combined HFR equations for the ground state of
an C(1s22s22p2) atom using Slater-type atomic orbitals as a basis. The results
of computer calculations for the linear-combination coefficients, orbital energies,
total energy and virial coefficient are given in table 4 (the data for the screening
constants of Slater atomic orbitals were taken from Clementi and Raimondi [28].
The results given in this table agree well with published data [28,29].

It should be noted that the modified determinantal method presented in
this paper can also be used to obtain the coupling-projection coefficients for
open-shell nuclei and molecules. Work is in progress in our group for the com-
putation of structure of atomic–molecular and nuclear systems with multideter-
minantal state of a single configuration that has arbitrary open-shells.

Table 4
Numerical linear combination coefficients of Slater atomic orbitals (ui = ∑5

q=1 χqCqi ) for the

ground state of C(1s22s22p2, 3 P) and orbital energies (in a.u.).

ε1 = ε1s ε2 = ε2s ε3 = ε2px ε4 = ε2pz ε5 = ε2py

χq ζq −11.301550 −0.6774946 −0.1338743 −0.1338743 −0.1338743

χ1 = C(1s) 5.6727 0.997438 −0.235078 0.000000 0.000000 0.000000
χ2 = C(2s) 1.6083 0.011438 1.024702 0.000000 0.000000 0.000000
χ3 = C(2px ) 1.5679 0.000000 0.000000 1.000000 0.000000 0.000000
χ4 = C(2pz) 1.5679 0.000000 0.000000 0.000000 1.000000 0.000000
χ5 = C(2py) 1.5679 0.000000 0.000000 0.000000 0.000000 1.000000

Total energy Kinetic energy Virial ratio
−37.622389 37.622691 −1.999992
−37.622389 ([28])
−37.579018 ([29])
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6. Conclusion

It is well known that in the Roothaan’s HF theory the orbital-dependent
energy functional, equation (27), and Fock operators are not invariant to uni-
tary transformation of orbitals [24]. Therefore, Roothaan’s Fock operators are
not diagonalized. In this study, the new formulas are introduced for the com-
bined total energy, equation (4), and Fock operators (equation (19)) of open
shell atomic–molecular and nuclear systems, which are invariant with respect to
unitary transformation of orbitals. The variational principle is applied to the
energy functional and the new forms of HF and HFR equations are derived for
spatial orbitals ui and coefficients Cqi . For this purpose, we have minimized the
postulated energy functional with respect to the orbitals ui and coefficients Cqi ,
subject to the orthonormality constraints the Lagrangian multipliers of which
are designated with −2ωεsi . We conclude that the Lagrangian multipliers form
a Hermitian matrix, εsi = ε∗

is , and the resulting equations have the off-diagonal
coefficients εsi .

It is shown that the operator F̂ i is invariant with respect to the unitary
transformation of orbitals. We may therefore diagonalize the matrix ε, so that all
the orbitals ui and coefficients Cqi satisfy the HF and HFR equations, respec-
tively, F̂ i ui = εi ui and

∑
q (F̂ i

pq − εi Spq)Cqi = 0. Thus, in this paper we have
established the combined HF and HFR equations for open shell atomic–molec-
ular and nuclear systems.

We notice that in the case of integer and noninteger n-STOs, the multicen-
ter integrals occuring in the combined HFR approach for atomic and molecular
systems (ω = 1) can be calculated by the use of expansion and one-range addi-
tion theorems for STOs, �α-ETOs and Coulomb–Yukawa like central and non-
central interaction potentials established by Guseinov [30].
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